Fixed Point Math in C#

- - posted in Box2D, Box2DX, c-sharp, code, fixed-point, game-development, math, networking, physics

Fixed point math is an interesting optimization for games, and it also has the feature of determinism, something that floating point implementations lack due to rounding, truncation, and hardware differences.

With determinism, a networked physics simulation can guarantee that every machine can perform the same action, and given the exact same starting conditions, produce the same result. This reduces the network overhead significantly, instead of being forced to check the same result was achieved across all computers participating, one can instead make sure that each action was completed in the correct order instead.

Of course, cheating may force checks on the results anyway, but that’s a different problem.

(FInt.cs) download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
/*
Fixed Point Arithmatic structure and relevant methods. Simple fixed point structure included as well.

Created from information and code gathered here: http://stackoverflow.com/questions/605124/fixed-point-math-in-c

May be used for anything without permission.

To quote the original author (x4000 of stackoverflow.com):
"The accuracy of these functions as they are coded here is more than enough for my purposes, but if you need more you can increase the SHIFT AMOUNT on FInt.
Just be aware that if you do so, the constants on [trigonomic] functions will then need to be divided by 4096 and then multiplied by whatever your new SHIFT AMOUNT requires.
You're likely to run into some bugs if you do that and aren't careful, so be sure to run checks against the built-in Math functions to make sure that your results aren't
being put off by incorrectly adjusting a constant."

Code credit: x4000 of stackoverflow.com

Compiled into a usable source file by: Paul Bergeron

Date: 7/1/2009

More fixed point functions can be found written in Java here: http://home.comcast.net/~ohommes/MathFP/

*/

public struct FInt
{
    public long RawValue;
    public const int SHIFT_AMOUNT = 12; //12 is 4096

    public const long One = 1 << SHIFT_AMOUNT;
    public const int OneI = 1 << SHIFT_AMOUNT;
    public static FInt OneF = new FInt( 1, true );

    #region Constructors
    public FInt( long StartingRawValue, bool UseMultiple )
    {
        this.RawValue = StartingRawValue;
        if ( UseMultiple )
            this.RawValue = this.RawValue << SHIFT_AMOUNT;
    }
    public FInt( double DoubleValue )
    {
        DoubleValue *= (double)One;
        this.RawValue = (int)Math.Round( DoubleValue );
    }
    #endregion

    public int IntValue
    {
        get { return (int)( this.RawValue >> SHIFT_AMOUNT ); }
    }

    public int ToInt()
    {
        return (int)( this.RawValue >> SHIFT_AMOUNT );
    }

    public double ToDouble()
    {
        return (double)this.RawValue / (double)One;
    }

    public FInt Inverse
    {
        get { return new FInt( -this.RawValue, false ); }
    }

    #region FromParts
    /// <summary>
    /// Create a fixed-int number from parts.  For example, to create 1.5 pass in 1 and 500.
    /// </summary>
    /// <param name="PreDecimal">The number above the decimal.  For 1.5, this would be 1.</param>
    /// <param name="PostDecimal">The number below the decimal, to three digits.
    /// For 1.5, this would be 500. For 1.005, this would be 5.</param>
    /// <returns>A fixed-int representation of the number parts</returns>
    public static FInt FromParts( int PreDecimal, int PostDecimal )
    {
        FInt f = new FInt( PreDecimal );
        if ( PostDecimal != 0 )
            f.RawValue += ( new FInt( PostDecimal ) / 1000 ).RawValue;

        return f;
    }
    #endregion

    #region *
    public static FInt operator *( FInt one, FInt other )
    {
        return new FInt( ( one.RawValue * other.RawValue ) >> SHIFT_AMOUNT, false );
    }

    public static FInt operator *( FInt one, int multi )
    {
        return one * (FInt)multi;
    }

    public static FInt operator *( int multi, FInt one )
    {
        return one * (FInt)multi;
    }
    #endregion

    #region /
    public static FInt operator /( FInt one, FInt other )
    {
        return new FInt( ( one.RawValue << SHIFT_AMOUNT ) / ( other.RawValue  ), false );
    }

    public static FInt operator /( FInt one, int divisor )
    {
        return one / (FInt)divisor;
    }

    public static FInt operator /( int divisor, FInt one )
    {
        return (FInt)divisor / one;
    }
    #endregion

    #region %
    public static FInt operator %( FInt one, FInt other )
    {
        return new FInt( ( one.RawValue ) % ( other.RawValue ), false );
    }

    public static FInt operator %( FInt one, int divisor )
    {
        return one % (FInt)divisor;
    }

    public static FInt operator %( int divisor, FInt one )
    {
        return (FInt)divisor % one;
    }
    #endregion

    #region +
    public static FInt operator +( FInt one, FInt other )
    {
        return new FInt( one.RawValue + other.RawValue, false );
    }

    public static FInt operator +( FInt one, int other )
    {
        return one + (FInt)other;
    }

    public static FInt operator +( int other, FInt one )
    {
        return one + (FInt)other;
    }
    #endregion

    #region -
    public static FInt operator -( FInt one, FInt other )
    {
        return new FInt( one.RawValue - other.RawValue, false );
    }

    public static FInt operator -( FInt one, int other )
    {
        return one - (FInt)other;
    }

    public static FInt operator -( int other, FInt one )
    {
        return (FInt)other - one;
    }
    #endregion

    #region ==
    public static bool operator ==( FInt one, FInt other )
    {
        return one.RawValue == other.RawValue;
    }

    public static bool operator ==( FInt one, int other )
    {
        return one == (FInt)other;
    }

    public static bool operator ==( int other, FInt one )
    {
        return (FInt)other == one;
    }
    #endregion

    #region !=
    public static bool operator !=( FInt one, FInt other )
    {
        return one.RawValue != other.RawValue;
    }

    public static bool operator !=( FInt one, int other )
    {
        return one != (FInt)other;
    }

    public static bool operator !=( int other, FInt one )
    {
        return (FInt)other != one;
    }
    #endregion

    #region >=
    public static bool operator >=( FInt one, FInt other )
    {
        return one.RawValue >= other.RawValue;
    }

    public static bool operator >=( FInt one, int other )
    {
        return one >= (FInt)other;
    }

    public static bool operator >=( int other, FInt one )
    {
        return (FInt)other >= one;
    }
    #endregion

    #region <=
    public static bool operator <=( FInt one, FInt other )
    {
        return one.RawValue <= other.RawValue;
    }

    public static bool operator <=( FInt one, int other )
    {
        return one <= (FInt)other;
    }

    public static bool operator <=( int other, FInt one )
    {
        return (FInt)other <= one;
    }
    #endregion

    #region >
    public static bool operator >( FInt one, FInt other )
    {
        return one.RawValue > other.RawValue;
    }

    public static bool operator >( FInt one, int other )
    {
        return one > (FInt)other;
    }

    public static bool operator >( int other, FInt one )
    {
        return (FInt)other > one;
    }
    #endregion

    #region <
    public static bool operator <( FInt one, FInt other )
    {
        return one.RawValue < other.RawValue;
    }

    public static bool operator <( FInt one, int other )
    {
        return one < (FInt)other;
    }

    public static bool operator <( int other, FInt one )
    {
        return (FInt)other < one;
    }
    #endregion

    public static explicit operator int( FInt src )
    {
        return (int)( src.RawValue >> SHIFT_AMOUNT );
    }

    public static explicit operator FInt( int src )
    {
        return new FInt( src, true );
    }

    public static explicit operator FInt( long src )
    {
        return new FInt( src, true );
    }

    public static explicit operator FInt( ulong src )
    {
        return new FInt( (long)src, true );
    }

    public static FInt operator <<( FInt one, int Amount )
    {
        return new FInt( one.RawValue << Amount, false );
    }

    public static FInt operator >>( FInt one, int Amount )
    {
        return new FInt( one.RawValue >> Amount, false );
    }

    public override bool Equals( object obj )
    {
        if ( obj is FInt )
            return ( (FInt)obj ).RawValue == this.RawValue;
        else
            return false;
    }

    public override int GetHashCode()
    {
        return RawValue.GetHashCode();
    }

    public override string ToString()
    {
        return this.RawValue.ToString();
    }

    #region PI, DoublePI
    public static FInt PI = new FInt( 12868, false ); //PI x 2^12
    public static FInt TwoPIF = PI * 2; //radian equivalent of 260 degrees
    public static FInt PIOver180F = PI / (FInt)180; //PI / 180
    #endregion

    #region Sqrt
    public static FInt Sqrt( FInt f, int NumberOfIterations )
    {
        if ( f.RawValue < 0 ) //NaN in Math.Sqrt
            throw new ArithmeticException( "Input Error" );
        if ( f.RawValue == 0 )
            return (FInt)0;
        FInt k = f + FInt.OneF >> 1;
        for ( int i = 0; i < NumberOfIterations; i++ )
            k = ( k + ( f / k ) ) >> 1;

        if ( k.RawValue < 0 )
            throw new ArithmeticException( "Overflow" );
        else
            return k;
    }

    public static FInt Sqrt( FInt f )
    {
        byte numberOfIterations = 8;
        if ( f.RawValue > 0x64000 )
            numberOfIterations = 12;
        if ( f.RawValue > 0x3e8000 )
            numberOfIterations = 16;
        return Sqrt( f, numberOfIterations );
    }
    #endregion

    #region Sin
    public static FInt Sin( FInt i )
    {
        FInt j = (FInt)0;
        for ( ; i < 0; i += new FInt( 25736, false ) ) ;
        if ( i > new FInt( 25736, false ) )
            i %= new FInt( 25736, false );
        FInt k = ( i * new FInt( 10, false ) ) / new FInt( 714, false );
        if ( i != 0 && i != new FInt( 6434, false ) && i != new FInt( 12868, false ) &&
            i != new FInt( 19302, false ) && i != new FInt( 25736, false ) )
            j = ( i * new FInt( 100, false ) ) / new FInt( 714, false ) - k * new FInt( 10, false );
        if ( k <= new FInt( 90, false ) )
            return sin_lookup( k, j );
        if ( k <= new FInt( 180, false ) )
            return sin_lookup( new FInt( 180, false ) - k, j );
        if ( k <= new FInt( 270, false ) )
            return sin_lookup( k - new FInt( 180, false ), j ).Inverse;
        else
            return sin_lookup( new FInt( 360, false ) - k, j ).Inverse;
    }

    private static FInt sin_lookup( FInt i, FInt j )
    {
        if ( j > 0 && j < new FInt( 10, false ) && i < new FInt( 90, false ) )
            return new FInt( SIN_TABLE[i.RawValue], false ) +
                ( ( new FInt( SIN_TABLE[i.RawValue + 1], false ) - new FInt( SIN_TABLE[i.RawValue], false ) ) /
                new FInt( 10, false ) ) * j;
        else
            return new FInt( SIN_TABLE[i.RawValue], false );
    }

    private static int[] SIN_TABLE = {
        0, 71, 142, 214, 285, 357, 428, 499, 570, 641,
        711, 781, 851, 921, 990, 1060, 1128, 1197, 1265, 1333,
        1400, 1468, 1534, 1600, 1665, 1730, 1795, 1859, 1922, 1985,
        2048, 2109, 2170, 2230, 2290, 2349, 2407, 2464, 2521, 2577,
        2632, 2686, 2740, 2793, 2845, 2896, 2946, 2995, 3043, 3091,
        3137, 3183, 3227, 3271, 3313, 3355, 3395, 3434, 3473, 3510,
        3547, 3582, 3616, 3649, 3681, 3712, 3741, 3770, 3797, 3823,
        3849, 3872, 3895, 3917, 3937, 3956, 3974, 3991, 4006, 4020,
        4033, 4045, 4056, 4065, 4073, 4080, 4086, 4090, 4093, 4095,
        4096
    };
    #endregion

    private static FInt mul( FInt F1, FInt F2 )
    {
        return F1 * F2;
    }

    #region Cos, Tan, Asin
    public static FInt Cos( FInt i )
    {
        return Sin( i + new FInt( 6435, false ) );
    }

    public static FInt Tan( FInt i )
    {
        return Sin( i ) / Cos( i );
    }

    public static FInt Asin( FInt F )
    {
        bool isNegative = F < 0;
        F = Abs( F );

        if ( F > FInt.OneF )
            throw new ArithmeticException( "Bad Asin Input:" + F.ToDouble() );

        FInt f1 = mul( mul( mul( mul( new FInt( 145103 >> FInt.SHIFT_AMOUNT, false ), F ) -
            new FInt( 599880 >> FInt.SHIFT_AMOUNT, false ), F ) +
            new FInt( 1420468 >> FInt.SHIFT_AMOUNT, false ), F ) -
            new FInt( 3592413 >> FInt.SHIFT_AMOUNT, false ), F ) +
            new FInt( 26353447 >> FInt.SHIFT_AMOUNT, false );
        FInt f2 = PI / new FInt( 2, true ) - ( Sqrt( FInt.OneF - F ) * f1 );

        return isNegative ? f2.Inverse : f2;
    }
    #endregion

    #region ATan, ATan2
    public static FInt Atan( FInt F )
    {
        return Asin( F / Sqrt( FInt.OneF + ( F * F ) ) );
    }

    public static FInt Atan2( FInt F1, FInt F2 )
    {
        if ( F2.RawValue == 0 && F1.RawValue == 0 )
            return (FInt)0;

        FInt result = (FInt)0;
        if ( F2 > 0 )
            result = Atan( F1 / F2 );
        else if ( F2 < 0 )
        {
            if ( F1 >= 0 )
                result = ( PI - Atan( Abs( F1 / F2 ) ) );
            else
                result = ( PI - Atan( Abs( F1 / F2 ) ) ).Inverse;
        }
        else
            result = ( F1 >= 0 ? PI : PI.Inverse ) / new FInt( 2, true );

        return result;
    }
    #endregion

    #region Abs
    public static FInt Abs( FInt F )
    {
        if ( F < 0 )
            return F.Inverse;
        else
            return F;
    }
    #endregion

}

public struct FPoint
{
    public FInt X;
    public FInt Y;

    public FPoint( FInt X, FInt Y )
    {
        this.X = X;
        this.Y = Y;
    }

    public static FPoint FromPoint( Point p )
    {
        FPoint f = new FPoint();
        f.X = (FInt)p.X;
        f.Y = (FInt)p.Y;
        return f;
    }

    public static Point ToPoint( FPoint f )
    {
        return new Point( f.X.IntValue, f.Y.IntValue );
    }
}

The code is created from information based here

More fixed point functions can be found written in Java here